The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces
نویسندگان
چکیده
We study the combinatorial complexity of Voronoi diagram of point sites on a general triangulated 2-manifold surface, based on the geodesic metric. Given a triangulated 2-manifold T of n faces and a set of m point sites S = {s1, s2, · · · , sm} ∈ T , we prove that the complexity of Voronoi diagram VT (S) of S on T is O(mn) if the genus of T is zero. For a genus-g manifold T in which the samples in S are dense enough and the resulting Voronoi diagram satisfies the closed ball property, we prove that the complexity of Voronoi diagram VT (S) is O((m+ g)n).
منابع مشابه
Higher-order Voronoi diagrams on triangulated surfaces
We study the complexity of higher-order Voronoi diagrams on triangulated surfaces under the geodesic distance, when the sites may be polygonal domains of constant complexity. More precisely, we show that on a surface defined by n triangles the sum of the combinatorial complexities of the order-j Voronoi diagrams of m sites, for j = 1, . . . , k, is O(kn + km+ knm), which is asymptotically tight...
متن کاملFast Voronoi Diagrams and O sets on Triangulated Surfaces
We apply the Fast Marching Method on triangulated domains to e ciently compute Voronoi diagrams and o set curves on triangulated manifolds. The computational complexity of the proposed algorithm is optimal, O(M logM), where M is the number of vertices. The algorithm also applies to weighted domains in which a di erent cost is assigned to each surface point.
متن کاملThe Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces
An intrinsic discrete Laplace-Beltrami operator on simplicial surfaces S proposed in [2] was established via an intrinsic Delaunay tessellation on S. Up to now, this intrinsic Delaunay tessellations can only be computed by an edge flipping algorithm without any provable complexity analysis. In the paper, we show that the intrinsic Delaunay triangulation can be obtained from a duality of geodesi...
متن کاملPolyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes
This paper studies the Voronoi diagrams on 2-manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point-source based GVDs, since a typical bisector contains line segments, hyperbolic segments and paraboli...
متن کاملExact Implementation of Arrangements of Geodesic Arcs on the Sphere with Applications
Recently, the Arrangement 2 package of Cgal, the Computational Geometry Algorithms Library, has been greatly extended to support arrangements of curves embedded on two-dimensional parametric surfaces. The general framework for sweeping a set of curves embedded on a two-dimensional parametric surface was introduced in [3]. In this paper we concentrate on the specific algorithms and implementatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 113 شماره
صفحات -
تاریخ انتشار 2013